Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 229: 119454, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36513020

RESUMO

Well-functioning and stable microbial communities are critical for the operation of activated sludge (AS) wastewater treatment plants (WWTPs). Bioaugmentation represents a potentially useful approach to recover deteriorated systems or to support specific AS processes, but its application in full-scale WWTPs is generally problematic. We conducted a massive transplantation (in one day) exchanging AS from a donor to a recipient full-scale WWTP with similar process type (biological removal of nitrogen and phosphorus) and performance, but with differences in microbial community structure. The treatment performance in the recipient plant was not compromised and the effluent quality remained stable. The AS community structure of the recipient plant was initially very similar to the donor AS, but it almost completely restored the pre-transplantation structure approximately 40 days after transplantation, corresponding to 3 times the solid retention time. Most of the unique species of donor AS added to recipient AS disappeared quickly, although some disappeared more slowly the following months, indicating some survival and potentially a time limited function in the recipient plant. Moreover, the addition in higher abundance of most species already present in the recipient AS (e.g., the polyphosphate accumulating organisms) or the reduction of the abundance of unwanted bacteria (e.g., filamentous bacteria) in the recipient plant was not successful. Moreover, we observed similar abundance patterns after transplantation for species belonging to different functional guilds, so we did not observe an increase of the functional redundancy. Investigations of the microbial community structure in influent wastewater revealed that for some species the abundance trends in the recipient plant were closely correlated to their abundance in the influent. We showed that a very resilient microbial community was responsible for the outcome of the transplantation of AS at full-scale WWTP, potentially as a consequence of mass-immigration from influent wastewater. The overall results imply that massive transplantation of AS across different WWTPs is not a promising strategy to permanently solve operational problems. However, by choosing a compatible AS donor, short term mitigation of serious operational problems may be possible.


Assuntos
Microbiota , Esgotos , Esgotos/química , Águas Residuárias , Bactérias , Fósforo , Eliminação de Resíduos Líquidos/métodos
3.
Nat Commun ; 13(1): 1908, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393411

RESUMO

Microbial communities are responsible for biological wastewater treatment, but our knowledge of their diversity and function is still poor. Here, we sequence more than 5 million high-quality, full-length 16S rRNA gene sequences from 740 wastewater treatment plants (WWTPs) across the world and use the sequences to construct the 'MiDAS 4' database. MiDAS 4 is an amplicon sequence variant resolved, full-length 16S rRNA gene reference database with a comprehensive taxonomy from domain to species level for all sequences. We use an independent dataset (269 WWTPs) to show that MiDAS 4, compared to commonly used universal reference databases, provides a better coverage for WWTP bacteria and an improved rate of genus and species level classification. Taking advantage of MiDAS 4, we carry out an amplicon-based, global-scale microbial community profiling of activated sludge plants using two common sets of primers targeting regions of the 16S rRNA gene, revealing how environmental conditions and biogeography shape the activated sludge microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 966 genera and 1530 species that represent approximately 80% and 50% of the accumulated read abundance, respectively. Finally, we show that for well-studied functional guilds, such as nitrifiers or polyphosphate-accumulating organisms, the same genera are prevalent worldwide, with only a few abundant species in each genus.


Assuntos
Esgotos , Purificação da Água , Bactérias/genética , Genes de RNAr , Filogenia , RNA Ribossômico 16S/genética , Esgotos/microbiologia , Águas Residuárias/microbiologia
4.
ISME Commun ; 2(1): 18, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-37938743

RESUMO

Microbial communities in activated sludge (AS) are the core of sanitation in wastewater treatment plants (WWTPs). Microbial communities in AS have shown seasonal changes, however, long-term experiments (>2 years) are rarely conducted, limiting our understanding of the true seasonal dynamics in WWTPs. In this study, we resolved the microbial seasonal dynamics at the species level in four municipal full-scale WWTPs, sampled every 7-10 days, during 3-5 consecutive years. By applying a new time-series analysis approach, we revealed that the seasonal pattern was species-specific, where species belonging to the same functional guild or genus may show different seasonal dynamics. Species could be grouped into cohorts according to their seasonal patterns, where seasonal cohorts showed repeatable annual dynamics across years and plants. Species were also grouped according to their net growth rate in the AS (i.e., growing species and disappearing species). Growing species were more prevailing in spring and autumn cohorts, while disappearing species, which were only present due to the continuous immigration from influent wastewater, were mostly associated with winter and spring cohorts. Most known process-critical species, such as nitrifiers, polyphosphate accumulating organisms and filamentous organisms, showed distinct species-specific patterns. Overall, our study showed that overarching seasonal patterns affected microbial species in full-scale AS plants, with similar seasonal patterns across plants for many dominant species. These recurrent seasonal variations should be taken into account in the operation, understanding and management of the WWTPs.

5.
Proc Natl Acad Sci U S A ; 118(27)2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34187887

RESUMO

The assembly of bacterial communities in wastewater treatment plants (WWTPs) is affected by immigration via wastewater streams, but the impact and extent of bacterial immigrants are still unknown. Here, we quantify the effect of immigration at the species level in 11 Danish full-scale activated sludge (AS) plants. All plants have different source communities but have very similar process design, defining the same overall environmental growth conditions. The AS community composition in each plant was strongly reflected by the corresponding influent wastewater (IWW) microbial composition. Most species in AS across the plants were detected and quantified in the corresponding IWW, allowing us to identify their fate in the AS: growing, disappearing, or surviving. Most of the abundant species in IWW disappeared in AS, so their presence in the AS biomass was only due to continuous mass-immigration. In AS, most of the abundant growing species were present in the IWW at very low abundances. We predicted the AS species abundances from their abundance in IWW by using a partial least square regression model. Some species in AS were predicted by their own abundance in IWW, while others by multiple species abundances. Detailed analyses of functional guilds revealed different prediction patterns for different species. We show, in contrast to the present understanding, that the AS microbial communities were strongly controlled by the IWW source community and could be quantitatively predicted by taking into account immigration. This highlights a need to revise the way we understand, design, and manage the microbial communities in WWTPs.


Assuntos
Microbiota , Esgotos/microbiologia , Biodiversidade , Biomassa , Modelos Teóricos , Análise de Componente Principal , Especificidade da Espécie , Águas Residuárias/microbiologia
6.
Water Res ; 193: 116871, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33578056

RESUMO

Anaerobic digestion (AD) is a key technology at many wastewater treatment plants (WWTPs) for converting primary and surplus activated sludge to methane-rich biogas. However, the limited number of surveys and the lack of comprehensive datasets have hindered a deeper understanding of the characteristics and associations between key variables and the microbial community composition. Here, we present a six-year survey of 46 anaerobic digesters, located at 22 WWTPs in Denmark, which is the first and largest known study of the microbial ecology of AD at WWTPs at a regional scale. For three types of AD (mesophilic, mesophilic with thermal hydrolysis pretreatment, and thermophilic), we present the typical value range of 12 key parameters including operational variables and performance parameters. High-resolution bacterial and archaeal community analyses were carried out at species level using amplicon sequencing of >1,000 samples and the new ecosystem-specific MiDAS 3 reference database. We detected 42 phyla, 1,600 genera, and 3,584 species in the bacterial community, where 70% of the genera and 93% of the species represented environmental taxa that were only classified based on MiDAS 3 de novo placeholder taxonomy. More than 40% of the bacterial species were found not to grow in the mesophilic and thermophilic digesters and were only present due to immigration with the feed sludge. Ammonium concentration was the main driver shaping the bacterial community while temperature and pH were main drivers for the archaea in the three types of ADs. Sub-setting for the growing microbes improved significantly the correlation analyses and revealed the main drivers for the presence of specific species. Within mesophilic digesters, feed sludge composition and other key parameters (organic loading rate, biogas yield, and ammonium concentration) correlated with specific growing species. This survey provides a comprehensive insight into community structure at species level, providing a foundation for future studies of the ecological significance/characteristics and function of the many novel or poorly described taxa.


Assuntos
Microbiota , Purificação da Água , Anaerobiose , Archaea/genética , Reatores Biológicos , Dinamarca , Metano , Esgotos
7.
mBio ; 11(5)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32963001

RESUMO

High-throughput 16S rRNA gene amplicon sequencing is an essential method for studying the diversity and dynamics of microbial communities. However, this method is presently hampered by the lack of high-identity reference sequences for many environmental microbes in the public 16S rRNA gene reference databases and by the absence of a systematic and comprehensive taxonomy for the uncultured majority. Here, we demonstrate how high-throughput synthetic long-read sequencing can be applied to create ecosystem-specific full-length 16S rRNA gene amplicon sequence variant (FL-ASV) resolved reference databases that include high-identity references (>98.7% identity) for nearly all abundant bacteria (>0.01% relative abundance) using Danish wastewater treatment systems and anaerobic digesters as an example. In addition, we introduce a novel sequence identity-based approach for automated taxonomy assignment (AutoTax) that provides a complete seven-rank taxonomy for all reference sequences, using the SILVA taxonomy as a backbone, with stable placeholder names for unclassified taxa. The FL-ASVs are perfectly suited for the evaluation of taxonomic resolution and bias associated with primers commonly used for amplicon sequencing, allowing researchers to choose those that are ideal for their ecosystem. Reference databases processed with AutoTax greatly improves the classification of short-read 16S rRNA ASVs at the genus- and species-level, compared with the commonly used universal reference databases. Importantly, the placeholder names provide a way to explore the unclassified environmental taxa at different taxonomic ranks, which in combination with in situ analyses can be used to uncover their ecological roles.


Assuntos
Bactérias/classificação , Bases de Dados de Ácidos Nucleicos , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , RNA Ribossômico 16S/genética , Automação Laboratorial , Primers do DNA , Filogenia , Valores de Referência , Análise de Sequência de DNA , Águas Residuárias/microbiologia
8.
Water Res ; 182: 115955, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777640

RESUMO

The function of the microbiomes in wastewater treatment systems and anaerobic digesters is dictated by the physiological activity of their members and complex interactions between them. Since functional traits are often conserved at low taxonomic ranks (genus, species, strain), high resolution taxonomic classification is crucial to understand the role of microbes in any ecosystem. Here we present MiDAS 3, a comprehensive 16S rRNA gene reference database based on full-length 16S rRNA gene amplicon sequence variants (FL-ASVs) derived from activated sludge and anaerobic digester systems in Denmark. The new database proposes unique provisional names for all unclassified microorganisms down to species level, providing a new and much-needed tool for microbiome research. The MiDAS 3 database was used to analyze the microbiome in 20 Danish wastewater treatment plants with nutrient removal, sampled over 13 years. The 50 most abundant species belonged to 42 genera, including 14 genera with provisional 'midas' name. Of those, 20 have no known function in the system, which highlights the need for more efforts towards elucidating the role of important members of wastewater treatment ecosystems. The new MiDAS 3 database also forms the backbone of the MiDAS Field Guide - an online resource linking the identity of microorganisms in wastewater treatment systems to available data related to their functional importance. The new field guide contains a complete list of genera (>1800) and species (>4200) found in activated sludge and anaerobic digesters in Denmark, but is also relevant to wastewater systems across the world. The identity of the microbes is linked to functional information, where available, and the website provides the possibility to BLAST new sequences against the MiDAS 3 database. The MiDAS Field Guide is a collaborative platform acting as an online knowledge repository, facilitating understanding of wastewater treatment ecosystem function.


Assuntos
Microbiota , Esgotos , Anaerobiose , Filogenia , RNA Ribossômico 16S , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...